Computing the Concept Lattice using Dendritical Neural Networks

نویسندگان

  • David Ernesto Caro-Contreras
  • Andres Mendez-Vazquez
چکیده

Formal Concept Analysis (FCA) is a new and rich emerging discipline, and it provides e cient techniques and methods for e cient data analysis under the idea of attributes . The main tool used in this area is the Concept Lattice also named Galois Lattice or Maximal Rectangle Lattice. A naive way to generate the Concept Lattice is by enumeration of each cluster of attributes. Unfortunately the numbers of clusters under the inclusion attribute relation has an exponential upper bound. In this work, we present a novel algorithm, PIRA (PIRA is a Recursive Acronym), for computing Concept Lattices in an elegant way. This task is achieved through the relation between maximal height and width rectangles, and maximal anti-chains. Then, using a dendritical neural network is possible to identify the maximal anti-chains in the lattice structure by means of maximal height or width rectangles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network

In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...

متن کامل

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

Numerical solution of hybrid fuzzy differential equations by fuzzy neural network

The hybrid fuzzy differential equations have a wide range of applications in science and engineering. We consider the problem of nding their numerical solutions by using a novel hybrid method based on fuzzy neural network. Here neural network is considered as a part of large eld called neural computing or soft computing. The proposed algorithm is illustrated by numerical examples and the result...

متن کامل

Distribution Systems Reconfiguration Using Pattern Recognizer Neural Networks

A novel intelligent neural optimizer with two objective functions is designed for electrical distribution systems. The presented method is faster than alternative optimization methods and is comparable with the most powerful and precise ones. This optimizer is much smaller than similar neural systems. In this work, two intelligent estimators are designed, a load flow program is coded, and a spe...

متن کامل

Numerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network

In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013